免费看大片a-亚洲精品中文字幕乱码三区91-久久久在线视频-中文字幕免费高清在线观看-狼人狠狠干-www婷婷-欧美第一视频-国产中文字字幕乱码无限-色呦呦在线播放-男女羞羞无遮挡-成人男女视频-久久传媒-久久草精品-久久久精品综合-国产免费二区-四虎影院一区二区-国产操人-操操操爽爽爽-色就是色网站-久久77777-神马伦理影视-91手机在线看片-黄视频国产-中文字幕第100页-视频免费1区二区三区

Suzhou Electric Appliance Research Institute
期刊號: CN32-1800/TM| ISSN1007-3175

Article retrieval

文章檢索

首頁 >> 文章檢索 >> 往年索引

基于改進高斯過程回歸的變電站直流蓄電池SOH估算

來源:電工電氣發布時間:2025-11-25 12:25 瀏覽次數:12
基于改進高斯過程回歸的變電站直流蓄電池SOH估算
 
丁芃,謝昊含,司威,楊茹楠,劉明陽
(國網天津市電力公司濱海供電分公司,天津 300450)
 
    摘 要 :為了準確估算變電站直流蓄電池的健康狀態(SOH),輔助直流系統的運行決策,提出了一種基于改進高斯過程回歸的蓄電池SOH估算方法,通過建立變電站蓄電池組在實際不同運行工況下的蓄電池健康特征指標(HF),對高斯過程回歸算法進行適應性改進,將變電站蓄電池實際歷史運行數據與離線測試數據按比例混合制作訓練集,實現變電站蓄電池HFSOH之間的映射關系。實驗結果表明,該方法針對于變電站這一特殊場景下的蓄電池具有良好的估算效果,可為直流系統運行維護提供理論依據。
    關鍵詞 : 變電站 ;直流蓄電池 ;蓄電池健康狀態 ;蓄電池運行工況 ;高斯過程回歸 ;訓練集
    中圖分類號 :TM63 ;TM912     文獻標識碼 :A     文章編號 :1007-3175(2025)11-0014-07
 
SOH Estimation for DC Batteries in Substations Based on Improved Gaussian Process Regression
 
DING Peng, XIE Hao-han, SI Wei, YANG Ru-nan, LIU Ming-yang
(State Grid Tianjin Electric Power Company Binhai Power Supply Branch, Tianjin 300450, China)
 
    Abstract: In order to accurately estimate the state of health (SOH) of DC batteries in substations and assist in the operation decision-making of DC systems, this paper proposes a battery SOH estimation method based on improved Gaussian process regression. By establishing the health of feature (HF) of battery packs in substations under different operating conditions, the Gaussian process regression algorithm is adaptively improved. The actual historical operating data of substation batteries is mixed with offline test data in proportion to create a training set, achieving the mapping relationship between HF and SOH of substation batteries. The experimental results show that this method has good estimation effect on batteries in this special scenario of substations and can provide theoretical basis for the operation and maintenance of DC systems.
    Key words: substation; DC battery; state of health of battery; operating condition of battery; Gaussian process regression; training set
 
參考文獻
[1] 孫冬,許爽 . 梯次利用鋰電池健康狀態預測 [J]. 電工 技術學報,2018,33(9):2121-2129.
[2] GONG Qingrui, WANG Ping, CHENG Ze.An encoderdecoder model based on deep learning for state of health estimation of lithium-ion battery[J].Journal of Energy Storage,2022,46:103804.
[3] TIAN Jinpeng, XIONG Rui, SHEN Weixiang, et al. State-of-charge estimation of LiFePO4 batteries in electric vehicles:A deep-learning enabled approach[J].Applied Energy,2021,291:116812.
[4] HAN Xuebing, OUYANG Minggao, LU Languang, et al. Simplification of physics-based electrochemical model for lithium ion battery on electric vehicle. Part Ⅱ :Pseudo-twodimensional model simplification and state of charge estimation[J].Journal of Power Sources, 2015,278 :814-825.
[5] PLETT G L.Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs: Part3. State and parameter estimation[J]. Journal of Power Sources,2004,134(2):277-292.
[6] WANG Yujie, ZHANG Chenbin, CHEN Zonghai.A method for state-of-charge estimation of LiFePO4 batteries at dynamic currents and temperatures using particle filter[J].Journal of Power Sources,2015,279:306-311.
[7] CHANG Chun, WANG Qiyue, JIANG Jiuchun, et al. Lithium-ion battery state of health estimation using the incremental capacity and wavelet neural networks with genetic algorithm[J]. Journal of Energy Storage,2021,38:102570.
[8] LIU Datong, ZHOU Jianbao, LIAO Haitao, et al.A health indicator extraction and optimization framework for lithium-ion battery degradation modeling and prognostics[J].IEEE Transactions on Systems, Man, and Cybernetics:Systems,2015, 45(6):915-928.
[9] TIAN Jinpeng, XIONG Rui, SHEN Weixiang.Stateof-health estimation based on differential temperature for lithium ion batteries[J]. IEEE Transactions on Power Electronics,2020, 35(10):10363-10373. [10] ZHANG Li, LI Kang, DU Dajun, et al.A sparse least squares support vector machine used for SOC estimation of Li-ion Batteries[J].IFACPapersOnLine,2019,52(11):256-261.
[11] LI Xiaoyu, YUAN Changgui, WANG Zhenpo.Multitime-scale framework for prognostic health condition of lithium battery using modified Gaussian process regression and nonlinear regression[J].Journal of Power Sources,2020, 467:228358.
[12] GOEBEL K, SAHA B, SAXENA A, et al.Prognostics in battery health management[J].IEEE Instrumentation & Measurement Magazine,2008,11(4):33-40.
[13] HE Jianghe, WEI Zhongbao, BIAN Xiaolei, et al. State-of-health estimation of lithium-ion batteries using incremental capacity analysis based on voltage-capacity model[J].IEEE Transactions on Transportation Electrification, 2020,6(2):417-426.
[14] XUE Jiankai, SHEN Bo.A novel swarm intelligence optimization approach: Sparrow search algorithm[J]. Systems Science & Control Engineering an Open Access Journal,2020,8(1):22-34.
[15] CHUNG J, GULCEHRE C, CHO K H, et al.Empirical evaluation of gated recurrent neural networks on sequence modeling[J/OL].(2014-12-11)[2025- 08-14].https//arxiv.org/abs/1412.3555.
主站蜘蛛池模板: 骚虎视频在线观看 | 国产精品久久久精品 | 色综合久久天天综合网 | 国产精品久久久久永久免费看 | 亚洲爱 | 嫩草在线观看 | 国产一区二区三区四区在线观看 | 久久av高潮av无码av喷吹 | 91麻豆国产 | 嫩草一区二区三区 | 日日操夜夜 | 麻豆视频免费观看 | 91在线看片 | 在线视频在线观看 | 香蕉国产 | 久久久久免费视频 | 91精品人妻一区二区六十路 | 在线看片| 西西人体www大胆高清 | 大j8黑人w巨大888a片 | 成人在线观看免费视频 | 超碰在线观看97 | 午夜激情影院 | 麻豆精品久久久久久久99蜜桃 | 日韩av电影网站 | 亚洲综合五月天婷婷丁香 | 欧美视频一区二区三区 | 久久精品视频18 | 靠逼网站| 亚洲国产成人精品女人久久久 | 国产精品123 | 日韩aaa | 激情av| 女性裸体下面张开 | 午夜亚洲| 精品人妻一区二区三区日产乱码 | 97超碰在线播放 | 日本激情视频 | 91天堂网 | 中文字幕无码毛片免费看 | 国产精品久久久久久免费播放 | 熟妇人妻中文av无码 | 91视| 亚洲一区二区三区在线 | 欧美一区二区在线观看 | 激情久久久 | 秘密基地免费观看完整版中文 | 三级视频在线播放 | 三级av在线 | 久久精品99久久久久久久久 | 日日碰狠狠添天天爽无码 | 熟妇女人妻丰满少妇中文字幕 | www.亚洲| 成人看片泡妞 | 黄色三级网站 | 九九热九九 | 精品一区二区三区在线观看 | 性史性dvd影片农村毛片 | 免费黄色小视频 | 我和公激情中文字幕 | 成人天堂 | 久久久久久久久久久久久久久 | 国产中文字幕在线观看 | 欧美丰满一区二区免费视频 | 五月婷婷色 | 天天插天天操 | 天堂中文在线资源 | 欧美视频| 国产精品无码一区二区三区 | 天天躁日日躁狠狠很躁 | 在线观看的av | 夜夜爽久久精品91 | 少妇高潮久久久久久潘金莲 | 全部孕妇毛片丰满孕妇孕交 | 蜜桃做爰免费网站 | 1024在线视频 | 欧美成人精品欧美一级乱黄 | 四虎8848精品成人免费网站 | 住在隔壁的她动漫免费观看全集下载 | 国产精品一区二区三区四区 | 免费看黄色大片 | 日韩人妻无码一区二区三区 | 亚洲视频一区二区 | 国产伦精品一区二区三区视频女 | 国产精品久久久久久网站 | 99这里都是精品 | 欧美亚洲一区二区三区 | 日韩精品在线播放 | 三级在线视频 | 国产伦精品 | 牲欲强的熟妇农村老妇女视频 | 99国产精品99久久久久久 | 亚洲经典一区二区 | 秋霞午夜| 欧美在线免费观看 | 日日干夜夜撸 | 精品影片一区二区入口 | 黄色片免费观看 | 亚洲精品久久久久久久久久久 |