免费看大片a-亚洲精品中文字幕乱码三区91-久久久在线视频-中文字幕免费高清在线观看-狼人狠狠干-www婷婷-欧美第一视频-国产中文字字幕乱码无限-色呦呦在线播放-男女羞羞无遮挡-成人男女视频-久久传媒-久久草精品-久久久精品综合-国产免费二区-四虎影院一区二区-国产操人-操操操爽爽爽-色就是色网站-久久77777-神马伦理影视-91手机在线看片-黄视频国产-中文字幕第100页-视频免费1区二区三区

Suzhou Electric Appliance Research Institute
期刊號: CN32-1800/TM| ISSN1007-3175

Article retrieval

文章檢索

首頁 >> 文章檢索 >> 最新索引

基于改進高斯過程回歸的變電站直流蓄電池SOH估算

來源:電工電氣發布時間:2025-11-25 12:25 瀏覽次數:10
基于改進高斯過程回歸的變電站直流蓄電池SOH估算
 
丁芃,謝昊含,司威,楊茹楠,劉明陽
(國網天津市電力公司濱海供電分公司,天津 300450)
 
    摘 要 :為了準確估算變電站直流蓄電池的健康狀態(SOH),輔助直流系統的運行決策,提出了一種基于改進高斯過程回歸的蓄電池SOH估算方法,通過建立變電站蓄電池組在實際不同運行工況下的蓄電池健康特征指標(HF),對高斯過程回歸算法進行適應性改進,將變電站蓄電池實際歷史運行數據與離線測試數據按比例混合制作訓練集,實現變電站蓄電池HFSOH之間的映射關系。實驗結果表明,該方法針對于變電站這一特殊場景下的蓄電池具有良好的估算效果,可為直流系統運行維護提供理論依據。
    關鍵詞 : 變電站 ;直流蓄電池 ;蓄電池健康狀態 ;蓄電池運行工況 ;高斯過程回歸 ;訓練集
    中圖分類號 :TM63 ;TM912     文獻標識碼 :A     文章編號 :1007-3175(2025)11-0014-07
 
SOH Estimation for DC Batteries in Substations Based on Improved Gaussian Process Regression
 
DING Peng, XIE Hao-han, SI Wei, YANG Ru-nan, LIU Ming-yang
(State Grid Tianjin Electric Power Company Binhai Power Supply Branch, Tianjin 300450, China)
 
    Abstract: In order to accurately estimate the state of health (SOH) of DC batteries in substations and assist in the operation decision-making of DC systems, this paper proposes a battery SOH estimation method based on improved Gaussian process regression. By establishing the health of feature (HF) of battery packs in substations under different operating conditions, the Gaussian process regression algorithm is adaptively improved. The actual historical operating data of substation batteries is mixed with offline test data in proportion to create a training set, achieving the mapping relationship between HF and SOH of substation batteries. The experimental results show that this method has good estimation effect on batteries in this special scenario of substations and can provide theoretical basis for the operation and maintenance of DC systems.
    Key words: substation; DC battery; state of health of battery; operating condition of battery; Gaussian process regression; training set
 
參考文獻
[1] 孫冬,許爽 . 梯次利用鋰電池健康狀態預測 [J]. 電工 技術學報,2018,33(9):2121-2129.
[2] GONG Qingrui, WANG Ping, CHENG Ze.An encoderdecoder model based on deep learning for state of health estimation of lithium-ion battery[J].Journal of Energy Storage,2022,46:103804.
[3] TIAN Jinpeng, XIONG Rui, SHEN Weixiang, et al. State-of-charge estimation of LiFePO4 batteries in electric vehicles:A deep-learning enabled approach[J].Applied Energy,2021,291:116812.
[4] HAN Xuebing, OUYANG Minggao, LU Languang, et al. Simplification of physics-based electrochemical model for lithium ion battery on electric vehicle. Part Ⅱ :Pseudo-twodimensional model simplification and state of charge estimation[J].Journal of Power Sources, 2015,278 :814-825.
[5] PLETT G L.Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs: Part3. State and parameter estimation[J]. Journal of Power Sources,2004,134(2):277-292.
[6] WANG Yujie, ZHANG Chenbin, CHEN Zonghai.A method for state-of-charge estimation of LiFePO4 batteries at dynamic currents and temperatures using particle filter[J].Journal of Power Sources,2015,279:306-311.
[7] CHANG Chun, WANG Qiyue, JIANG Jiuchun, et al. Lithium-ion battery state of health estimation using the incremental capacity and wavelet neural networks with genetic algorithm[J]. Journal of Energy Storage,2021,38:102570.
[8] LIU Datong, ZHOU Jianbao, LIAO Haitao, et al.A health indicator extraction and optimization framework for lithium-ion battery degradation modeling and prognostics[J].IEEE Transactions on Systems, Man, and Cybernetics:Systems,2015, 45(6):915-928.
[9] TIAN Jinpeng, XIONG Rui, SHEN Weixiang.Stateof-health estimation based on differential temperature for lithium ion batteries[J]. IEEE Transactions on Power Electronics,2020, 35(10):10363-10373. [10] ZHANG Li, LI Kang, DU Dajun, et al.A sparse least squares support vector machine used for SOC estimation of Li-ion Batteries[J].IFACPapersOnLine,2019,52(11):256-261.
[11] LI Xiaoyu, YUAN Changgui, WANG Zhenpo.Multitime-scale framework for prognostic health condition of lithium battery using modified Gaussian process regression and nonlinear regression[J].Journal of Power Sources,2020, 467:228358.
[12] GOEBEL K, SAHA B, SAXENA A, et al.Prognostics in battery health management[J].IEEE Instrumentation & Measurement Magazine,2008,11(4):33-40.
[13] HE Jianghe, WEI Zhongbao, BIAN Xiaolei, et al. State-of-health estimation of lithium-ion batteries using incremental capacity analysis based on voltage-capacity model[J].IEEE Transactions on Transportation Electrification, 2020,6(2):417-426.
[14] XUE Jiankai, SHEN Bo.A novel swarm intelligence optimization approach: Sparrow search algorithm[J]. Systems Science & Control Engineering an Open Access Journal,2020,8(1):22-34.
[15] CHUNG J, GULCEHRE C, CHO K H, et al.Empirical evaluation of gated recurrent neural networks on sequence modeling[J/OL].(2014-12-11)[2025- 08-14].https//arxiv.org/abs/1412.3555.
主站蜘蛛池模板: 中文字幕在线观看av | 国产精品视频久久 | 这里只有精品视频 | 痴汉电车在线观看 | 中国老熟女重囗味hdxx | 大地资源二中文在线播放免费观看新剧 | 在线视频福利 | 亚洲同性gay激情无套 | 神马午夜精品95 | 找av导航| 欧美日韩一区二区三区四区 | 国产一级黄 | 男人操女人网站 | 久久新 | 午夜视频免费在线观看 | 色翁荡息又大又硬又粗又爽 | 久久午夜夜伦鲁鲁一区二区 | www.男人的天堂 | 久久人人爽人人爽人人片 | 毛片传媒 | 成人av毛片 | 自拍偷拍亚洲 | 亲嘴扒胸摸屁股免费视频日本网站 | 国产成人一区二区 | 91成人在线观看喷潮动漫 | 国产麻豆剧传媒精品国产av | 一级片国产| 一区二区高清 | av大帝 | 夜色网 | 国产欧美一区二区精品性色超碰 | 欧美日韩成人在线 | 亚洲视频在线观看免费 | 中文字幕免费观看 | 一级片在线免费观看 | 久草视频免费在线观看 | 97香蕉碰碰人妻国产欧美 | 男女日皮视频 | 一区二区三区免费观看 | 久久久老熟女一区二区三区91 | 国产高清一区二区三区 | 精品人妻二区中文字幕 | 强行糟蹋人妻hd中文字幕 | 欧亚av | 中文字幕二区 | 久久精彩视频 | 国产一级视频 | 亚色图 | www国产精品 | 国产视频一区二区三区四区 | 精品人妻一区二区三区日产 | 国产日韩欧美视频 | 香蕉视频免费在线观看 | 中文一区二区 | 已满十八岁免费观看 | 成人免费毛片男人用品 | 久久精品99 | 国内精品视频在线观看 | 97视频在线观看免费高清完整版在线观看 | 国产99精品 | 色导航 | 欧美草逼视频 | 狠狠干天天干 | 午夜精品久久久久 | 精品人妻一区二区三区含羞草 | 97在线免费观看 | 国产精彩视频 | 黑料网在线观看 | 久久国产精品网站 | 欧美日批 | 久久国 | 国产精品一区二区在线观看 | 狠狠干狠狠爱 | 午夜国产福利 | 操操网| 国产一级一片免费播放放a 在线一区 | 精品在线一区 | 少妇av | 羞羞网站在线观看 | 亚洲综合激情五月久久 | 成人精品久久久 | 国产一区二区不卡 | 麻豆免费在线观看 | 91看片网站| 国产不卡在线观看 | 性久久久久久 | 成人午夜福利视频 | 丁香花国语版普通话 | 五月婷婷丁香 | av超碰| 网站av| 成人一区二区三区 | 97影视| 人人爱人人爽 | a人片 | 羞羞网站在线观看 | 福利视频一区 | 国精产品一区一区三区 | 成人性生活视频 |