免费看大片a-亚洲精品中文字幕乱码三区91-久久久在线视频-中文字幕免费高清在线观看-狼人狠狠干-www婷婷-欧美第一视频-国产中文字字幕乱码无限-色呦呦在线播放-男女羞羞无遮挡-成人男女视频-久久传媒-久久草精品-久久久精品综合-国产免费二区-四虎影院一区二区-国产操人-操操操爽爽爽-色就是色网站-久久77777-神马伦理影视-91手机在线看片-黄视频国产-中文字幕第100页-视频免费1区二区三区

Suzhou Electric Appliance Research Institute
期刊號: CN32-1800/TM| ISSN1007-3175

Article retrieval

文章檢索

首頁 >> 文章檢索 >> 往年索引

基于小波變換結合堆疊融合算法的非侵入式負載識別

來源:電工電氣發布時間:2025-10-28 15:28 瀏覽次數:31

基于小波變換結合堆疊融合算法的非侵入式負載識別

李港,邱達,劉西林
(湖北民族大學 智能科學與工程學院,湖北 恩施 445000)
 
    摘 要:針對非侵入式負載監測識別準確率低、泛化能力弱、穩定性差的問題,提出了一種結合特征選擇性小波變換與堆疊融合分類算法的負載識別方法。研究利用 CS5463 芯片采集電能數據,通過特征選擇性小波變換提取電流的時頻特征,并結合功率和功率因數構建復合特征向量。采用k 最近鄰算法(KNN)、隨機森林(RF)和支持向量機(SVM)作為基學習器,通過堆疊融合算法提升準確率、泛化能力,優化分類性能,并引入動態負載識別優化算法以提升實際應用效果。實驗結果表明,該堆疊融合模型在測試集上的準確率為98.42%,而單一模型KNN、SVM和RF的準確率分別為90.24%、94.99% 和97.10%,同樣數據集上未經小波變換的融合算法準確率為93.67%,加入動態負載識別優化算法后,模型的穩定性和準確性在實際應用中進一步提高。
    關鍵詞: 非侵入式負載監測;特征選擇性小波變換;堆疊融合算法;CS5463 芯片;動態負載識別優化算法
    中圖分類號:TM714 ;TM734     文獻標識碼:A     文章編號:1007-3175(2025)10-0031-07
 
A Non-Intrusive Load Identification Method Based on Wavelet
Transform and Stacked Fusion Algorithm
 
LI Gang, QIU Da, LIU Xi-lin
(College of Intelligent Systems Science and Engineering, Hubei Minzu University, Enshi 445000, China)
 
    Abstract: To address the challenges of low identification accuracy, weak generalization capability, and poor stability in non-intrusive load monitoring,this paper proposes a load identification method that integrates feature-selective wavelet transform with a stacked fusion algorithm. The study utilizes the CS5463 chip to collect electrical data, extracts the time-frequency characteristics of current signals by applying feature-selective wavelet transform, and combines with power and power factor information to construct a composite feature vector. Subsequently, k-nearest neighbors (KNN) algorithm, random forests (RF) , and support vector machines (SVM) are employed as base learners, the accuracy and generalization ability are enhanced through the stacked fusion algorithm, the classification performance is optimized, and the dynamic load identification optimization algorithm is introduced to improve the practical application effect. Experimental results demonstrate that the accuracy rate of the stacked fusion model on the test set is 98.42%, while the accuracy rates of the single models KNN, SVM and RF are 90.24%, 94.99% and 97.10% respectively. The accuracy rate of the fusion algorithm without wavelet transform on the same dataset is 93.67%. After adding the dynamic load identification optimization algorithm,the stability and accuracy of the model have been further enhanced in practical applications.
    Key words: non-intrusive load monitoring; feature-selective wavelet transform; stacked fusion algorithm; CS5463 chip; dynamic load identification optimization algorithm
 
參考文獻
[1] 陳繼開,祝世啟,李浩茹,等. 弱電網下并網逆變器鎖相環優化方法[J]. 儀器儀表學報,2022,43(2) :234-243.
[2] REHMAN A U, TITO S R, NIEUWOUDT P, et al.Applications of Non-Intrusive Load Monitoring Towards Smart and Sustainable Power Grids:A System Perspective[C]//2019 29th Australasian Universities Power Engineering Conference(AUPEC),2019 :1-6.
[3] HART G W.Nonintrusive appliance load monitoring [J].Proceedings of the IEEE,1992,80(12) :1870-1891.
[4] ZEIFMAN M, ROTH K.Nonintrusive appliance load monitoring: Review and outlook[J].IEEE Transactions on Consumer Electronics,2011,57(1) :76-84.
[5] NGUYEN M, ALSHAREEF S, GILANI A, et al.A novel feature extraction and classification algorithm based on power components using single-point monitoring for NILM[C]//2015 IEEE 28th Canadian Conference on Electrical and Computer Engineering(CCECE),2015 :37-40.
[6] LU Lei, GU Chao, FENG Junguo, et al.Non-Intrusive Load Monitoring Based on Multiple Feature Optimization and Genetic Algorithm[C]//2022 5th International Conference on Renewable Energy and Power Engineering(REPE),2022 :115-120.
[7] SUN Mingxu, NAKOTY Francis Mawuli, LIU Qi, et al.Non-intrusive load monitoring system framework and load disaggregation algorithms:A survey[C]//2019 International Conference on Advanced Mechatronic Systems(ICAMechS),2019 :284-288.
[8] PRECIOSO D, GOMEZ-ULLATE D.Thresholding methods in non-intrusive load monitoring[J].The Journal of Supercomputing,2023,79(13) :14039-14062.
[9] MOHAMMAD I A, RAJABI R, ESTEBSARI A.Non-Intrusive Load Monitoring(NILM) Using Deep Neural Networks:A Review[EB/OL].(2023-06-08)[2025-06-05].https://arxiv.org/pdf/2306.05017.
[10] MURSHED M G S, MURPHY C, HOU D, et al.Machine learning at the network edge:A survey[J].ACM Computing Surveys(CSUR),2021,54(8) :1-37.
[11] GUIDOTTI R, MONREALE A, RUGGIERI S, et al.A survey of methods for explaining black box models[J].ACM Computing Surveys(CSUR),2018,51(5) :1-42.
[12] 董慧芬,陳蒙. 電能質量信號的非均勻子帶分解小波去噪[J]. 電子測量與儀器學報,2022,36(3) :149-156.
[13] HE Hui, LIU Zixuan, JIAO Runhai, et al.A novel nonintrusive load monitoring approach based on linear-chain conditional random fields[J].Energies,2019,12(9) :1797.
[14] CHEN Junfeng, WANG Xue, ZHANG Xiaotian, et al.Temporal and spectral feature learning with twostream convolutional neural networks for appliance recognition in NILM[J].IEEE Transactions on Smart Grid,2022,13(1) :762-772.
[15] FANG Zhaoyuan, ZHAO Dongbo, CHEN Chen, et al.Nonintrusive appliance identification with appliance-specific networks[J].IEEE Transactions on Industry Applications,2020,56(4) :3443-3452.
[16] GHOSH S , CHATTERJEE A , CHATTERJEE D . An improved load feature extraction technique for smart homes using fuzzy-based NILM[J].IEEE Transactions on Instrumentation and Measurement,2021,70 :1-9.
[17] REHMAN A U , LIE T T , VALLES B , et al .Comparative evaluation of machine learning models and input feature space for non-intrusive load monitoring[J].Journal of Modern Power Systems and Clean Energy,2021,9(5) :1161-1171.
[18] SAHA D, BHATTACHARJEE A, CHOWDHURY D, et al.Comprehensive NILM framework:Device type classification and device activity status monitoring using capsule network[J].IEEE Access,2020,8 :179995-180009.
[19] 朱浩,曹寧,鹿浩,等. 基于特征加權 KNN 的非侵入式負荷識別方法[J]. 電子測量技術,2022,45(8) :70-75.
[20] LI Ding, DICK Scott.Residential household nonintrusive load monitoring via graph-based multilabel semi-supervised learning[J].IEEE Transactions on Smart Grid,2019,10(4) :4615-4627.
[21] BERGES M, GOLDMAN E, MATTHEWS H S, et al. Training load monitoring algorithms on highly sub-metered home electricity consumption data[J].Tsinghua Science and Technology,2008,13(S1) :406-411.
[22] CHEN M T, LIN C M.Standby power management of a smart home appliance by using energy saving system with active loading feature identification[J].IEEE Transactions on Consumer Electronics,2019,65(1) :11-17.
[23] LIU Yanchi, WANG Xue, YOU Wei.Non-intrusive load monitoring by voltage-current trajectory enabled transfer learning[J].IEEE Transactions on Smart Grid,2019,10(5) :5609-5619.

 

主站蜘蛛池模板: 大地资源二中文在线播放免费观看新剧 | av超碰| 欧美第二页 | 91久久爽久久爽爽久久片 | 黄色大片免费看 | 日韩中文字幕av | 人人妻人人澡人人爽人人欧美一区 | 91超碰在线观看 | 草草浮力影院 | 人人爱人人爽 | 欧美成人精品欧美一级乱黄 | 国产99精品| 日韩一区二区三区视频 | 已满18岁免费观看电视连续剧 | 天天草天天干 | 香蕉视频免费 | 国产一区二区三区四区在线观看 | 成人在线网站 | 国产精品资源 | 国产精品视频久久 | 五月婷婷中文字幕 | 亚洲经典一区 | 成全世界免费高清观看 | 少妇xxx | 日本xxxxxxxxx18| 精品一区二区三区视频 | 青青草国产| 日韩免费观看 | 女人被男人操 | 天天综合色| 人妻丰满熟妇aⅴ无码 | 色欲狠狠躁天天躁无码中文字幕 | 日本五十熟hd丰满 | 激情综合五月天 | 日韩欧美色图 | 亚洲精品久久久久中文字幕二区 | c逼| 亚洲视频在线观看 | 在线观看视频 | 99热在线观看 | 高潮一区二区三区乱码 | 亚洲欧洲一区二区 | 国产精品久久久精品 | 卡一卡二卡三 | 不许穿内裤随时挨c调教h苏绵 | 在线永久看片免费的视频 | 最近最经典中文mv字幕 | 国模av| 午夜福利视频 | 欧美午夜精品 | 狠狠躁 | 爱爱免费视频 | 天天想你在线观看完整版电影高清 | 999视频 | 午夜精品视频在线观看 | 香蕉视频免费在线观看 | 黄色片免费 | 一级片免费在线观看 | 麻豆精品国产 | 福利二区 | 色一区二区 | 一区二区三区中文字幕 | 欧美一级在线 | 国产超碰 | 欧美精品欧美精品系列 | 国产suv精品一区二区6 | 中文字幕久久久 | 欧美乱码精品一区二区三区 | 污视频在线免费观看 | 高跟肉丝丝袜呻吟啪啪网站av | 国产欧美一区二区 | 日本中文字幕在线播放 | av在线免费观看网站 | 中文字幕色 | 国语对白做受69 | 成人伊人网 | 国产黄色网 | 99re| 日韩高清一区 | 在线| 72种无遮挡啪啪的姿势 | 久久久久久国产精品 | 成人午夜精品 | 国产传媒av | 成人在线视频网站 | 日韩视频免费在线观看 | 国产一区二区 | 91成人免费| 黄色成人av | 精品影片一区二区入口 | 无码人妻一区二区三区免费n鬼沢 | 波多野结衣一二三区 | 女性裸体下面张开 | 成人黄色在线观看 | 欧美激情一区二区三区 | 亚洲色图第一页 | 久久久网站 | 久久精品亚洲 | 欧美爱爱视频 |