免费看大片a-亚洲精品中文字幕乱码三区91-久久久在线视频-中文字幕免费高清在线观看-狼人狠狠干-www婷婷-欧美第一视频-国产中文字字幕乱码无限-色呦呦在线播放-男女羞羞无遮挡-成人男女视频-久久传媒-久久草精品-久久久精品综合-国产免费二区-四虎影院一区二区-国产操人-操操操爽爽爽-色就是色网站-久久77777-神马伦理影视-91手机在线看片-黄视频国产-中文字幕第100页-视频免费1区二区三区

Suzhou Electric Appliance Research Institute
期刊號(hào): CN32-1800/TM| ISSN1007-3175

Article retrieval

文章檢索

首頁 >> 文章檢索 >> 往年索引

用于電力設(shè)備異常診斷的圖像配準(zhǔn)及融合方法

來源:電工電氣發(fā)布時(shí)間:2024-12-02 08:02 瀏覽次數(shù):317

用于電力設(shè)備異常診斷的圖像配準(zhǔn)及融合方法

周喜紅1,席亞賓1,李中寶2
(1 廣東粵電大亞灣綜合能源有限公司,廣東 惠州 516000;
2 中國核工業(yè)二三建設(shè)有限公司,北京 101300)
 
    摘 要:近年來圖像融合方法在電力設(shè)備熱異常的診斷中所占比重逐漸增加,但是涉及到圖像配準(zhǔn)和融合統(tǒng)一考慮的方法很少。提出了一種最大迭代關(guān)聯(lián)圖像配準(zhǔn)及區(qū)域特性判別的圖像融合方法,用于輔助熱異常的診斷。該方法通過構(gòu)建約束函數(shù)計(jì)算源圖像配準(zhǔn)迭代次數(shù),隸屬度函數(shù)定義源圖像的區(qū)域特性,已知區(qū)域特性的子圖像根據(jù)電力設(shè)備熱異常所重視的特征優(yōu)先選擇融合策略,以最大程度保留源圖像中的紋理特征和熱輻射特征。在自建的電力設(shè)備數(shù)據(jù)集上與其他方法對(duì)比顯示,所提方法在保證源圖像配準(zhǔn)精度的前提下,還突出了紅外圖像的熱輻射特征和可見光圖像的紋理特征,能夠滿足電力設(shè)備熱異常診斷的需要。
    關(guān)鍵詞: 圖像融合;圖像配準(zhǔn);電力設(shè)備;熱異常診斷;約束函數(shù);隸屬度函數(shù);熱輻射
    中圖分類號(hào):TM711 ;TP391     文獻(xiàn)標(biāo)識(shí)碼:B     文章編號(hào):1007-3175(2024)11-0067-10
 
Image Registration and Fusion Method for Anomaly
Diagnosis of Power Equipment
 
ZHOU Xi-hong1, XI Ya-bin1, LI Zhong-bao2
(1 Guangdong Yuedian Daya Bay Integrated Energy Co., Ltd, Huizhou 516000, China;
2 China Nuclear Industry 23 Construction Co., Ltd, Beijing 101300, China)
 
    Abstract: In recent years, the proportion of image fusion methods in the diagnosis of thermal anomalies of power equipment has gradually increased, but the methods involving unified consideration of image registration and fusion are rare. Therefore, this paper proposes an image fusion method based on maximum iterative correlation image registration and regional feature discrimination, which is used to assist thermal anomaly diagnosis. This method calculates the number of source image registration iterations by constructing a constraint function, and the membership function defines the regional characteristics of the source image. The sub-images with known regional characteristics preferentially select the fusion strategy according to the characteristics that the thermal anomaly of the power equipment attaches importance to, so as to retain the texture features and thermal radiation features in the source image to the greatest extent. Compared with other methods on the self-built power equipment dataset, the proposed method not only ensures the registration accuracy of the source image, but also highlights the thermal radiation characteristics of the infrared image and the texture characteristics of the visible image, which can meet the needs of thermal anomaly diagnosis of power equipment.
    Key words: image fusion; image registration; power equipment; thermal anomaly diagnosis; constraint function; membership function;thermal radiation
 
參考文獻(xiàn)
[1] CHEN Xiaolong, WANG Peihong, HAO Yongsheng, et al.Evidential KNN-Based Condition Monitoring and Early Warning Method with Applications in Power Plant[J].Neurocomputing,2018,315 :18-32.
[2] HUANG Z, XIE W, LIU W, et al.TSCDNet +: A Highly Robust Substation Anomaly Detection Method[J].Optik,2021,246 :167808.
[3] NAN L D, RUI H, QIANG L, et al.Research on Fuzzy Enhancement Algorithms for Infrared Image Recognition Quality of Power Internet of Things Equipment Based on Membership Function[J].Journal of Visual Communication & Image Representation,2019,62 :359-367.
[4] ZOU H, HUANG F.A Novel Intelligent Fault Diagnosis Method for Electrical Equipment Using Infrared Thermography[J].Infrared Physics & Technology,2015,73 :29-35.
[5] 魯曉涵,李洋,邰昱博,等. 基于 GAN 輕量化改進(jìn)的紅外與可見光圖像融合算法[J] . 電光與控制,2024,31(8) :58-62.
[6] 馮新文,劉璟明,朱呂甫. 基于 MSR 和 BCI 的變電站巡檢圖像融合方法[J] . 電力信息與通信技術(shù),2022,20(4) :94-101.
[7] 陰錫君,劉郁,王一珺. 圖像融合技術(shù)在變電站設(shè)備熱故障監(jiān)測(cè)中的應(yīng)用研究[J] . 科技通報(bào),2019,35(12) :121-124.
[8] JIANG Qian, LIU Yadong, YAN Yingjie, et al.A Contour Angle Orientation for Power Equipment Infrared and Visible Image Registration[J].IEEE Transactions on Power Delivery,2020,36(4) :2559-2569.
[9] LU Mingshu, LIU Haiting, YUAN Xipeng.Thermal Fault Diagnosis of Electrical Equipment in Substations Based on Image Fusion[J]. Traitement Du :Signal Imageparole,2021,38(4) :1095-1102.
[10] 李健,王濱海,李麗,等. 基于 SIFT 的電力設(shè)備紅外與可見光圖像的配準(zhǔn)和融合[J] . 光學(xué)與光電技術(shù),2012,10(1) :75-78.
[11] XU Han, MA Jiayi, YUAN Jiteng, et al.RFNet:Unsupervised Network for Mutually Reinforcing Multi-Modal Image Registration and Fusion[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR),2022.
[12] ZHU Qidan, JING Liqiu, BI Rongsheng.Exploration and Improvement of Ostu Threshold Segmentation Algorithm [C]//The 8th World Congress on Intelligent Control and Automation, 2010.
[13] JING Zhongliang.Image Fusion Based on an Expectation Maximization Algorithm[J].Optical Engineering,2005,44(7) :077001.
[14] PALSSON F, SVEINSSON J R, ULFARSSON M O,et al . Model-Based Fusion of Multi-and Hyperspectral Images Using PCA and Wavelets[J].IEEE Transactions on Geoscience & Remote Sensing,2015,53(5) :2652-2663.
[15] SHEN R, CHENG I, BASU A.Cross-Scale Coefficient Selection for Volumetric Medical Image Fusion[J].IEEE Transactions on BiomedicalEngineering,2012,60(4) :1069-1079.
[16] JAGER F, HORNEGGER J.Nonrigid Registration of Joint Histograms for Intensity Standardization in Magnetic Resonance Imaging [J] . IEEE Transactions on Medical Imaging,2008,28(1) :137-150.
[17] GONCALVES H, CORTE-REAL L, GONCALVES J A.Automatic Image Registration Through Image Segmentation and SIFT[J].IEEE Transactions on Geoscience and Remote Sensing,2011,49(7) :2589-2600.
[18] BAY H, ESS A, TUYTELAARS T, et al.Speeded-Up Robust Features(SURF)[J].Computer Vision & Image Understanding,2008,110(3) :346-359.
[19] LI Shutao, KANG Xudong, HU Jianwen.Image Fusion with Guided Filtering[J].IEEE Transactions on Image Processing,2013,22(7) :2864-2875.
[20] MA J Y, CHEN C, LI C, et al.Infrared and Visible Image Fusion Via Gradient Transfer and Total Variation Minimization[J].Information Fusion,2016,31 :100-109.
[21] BAVIRISETTI D P, XIAO G, LIU G.Multi-Sensor Image Fusion Based on Fourth Order Partial Differential Equations[C]//2017 20th International Conference on Information Fusion,2017.
[22] YAN Lei, CAO Jie, RIZVI Saad, et al.Improving the Performance of Image Fusion Based on Visual Saliency Weight Map Combined with CNN[J].IEEE Access,2020,8 :59976-59986.
[23] XU Han, MA Jiayi, JIANG Junjun, et al.U2Fusion:A Unified Unsupervised Image Fusion Network[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2022,44(1) :502-518.
[24] MA Jiayi, XU Han, JIANG Junjun, et al.DDcGAN:A Dual-Discriminator Conditional Generative Adversarial Network for Multi-Resolution Image Fusion[J].IEEE Transactions on Image Processing,2020,29 :4980-4995.
[25] MA Jiayi, ZHANG Hao, SHAO Zhenfeng, et al.GANMcC:A Generative Adversarial Network with Multiclassification Constraints for Infrared and Visible Image Fusion[J].IEEE Transactions on Instrumentation and Measurement,2020,70 :5005014.
[26] MA Jiayi, TANG Linfeng, XU Meilong, et al.STDFusionNet:An Infrared and Visible Image Fusion Network Based on Salient Target Detection[J].IEEE Transactions on Instrumentation and Measurement,2021,70 :5009513.
[27] SENGUPTA D, GUPTA P, BISWAS A.A Survey on Mutual Information Based Medical Image Registration Algorithms[J].Neurocomputing,2021,486 :174-188.
[28] ROBERTS J W, AARDT J V, AHMED F.Assessment of Image Fusion Procedures Using Entropy, Image Quality, and Multispectral Classification[J].Journal of Applied Remote Sensing,2008,2(1) :1-28.
[29] WANG E , YANG B , PANG L . Superpixel-Based Structural Similarity Metric for Image Fusion Quality Evaluation[J].Sensing and Imaging,2021,22(1) :1-25.
[30] XYDEAS C S , PV V . Objective Image Fusion Performance Measure[J].Military Technical Courier,2000,56(4) :181-193.
[31] ESKICIOGLU A M, FISHER P S.Image Quality Measures and Their Performance [J] . IEEE Transactions on Communications,1995,43(12) :2959-2965.

 

主站蜘蛛池模板: 短裙公车被强好爽h吃奶视频 | 狂野欧美性猛交xxⅹ李丽珍 | 国产调教 | 亚洲精品91 | 最新中文字幕在线 | 国产欧美一区二区精品性色超碰 | 人妻丰满熟妇aⅴ无码 | 黄色大片网站 | 99热这里有精品 | 99综合 | 这里有精品 | 亚洲日本欧美 | 狂野欧美性猛交xxⅹ李丽珍 | 光明影院手机版在线观看免费 | 特级淫片裸体免费看冫 | 成人小视频在线观看 | 成人一级视频 | 在线观看黄色片 | 国产日韩视频 | jlzzzjlzzz国产免费观看 | 卡一卡二卡三 | 亚洲欧美视频 | 欧美午夜影院 | 嫩草网站 | 久久国产精品视频 | 久久久久一区二区三区 | 国产高清成人久久 | 免费av在线播放 | 三级伦理片 | 精品久久一区二区三区 | 无码人妻一区二区三区免费n鬼沢 | 国产真实乱人偷精品人妻 | 国产crm系统91在线 | 特级西西人体444www高清大胆 | 亚洲综合网站 | 秋霞在线视频 | 成人精品 | 亚洲狠狠爱 | 中文字幕在线一区 | 欧美中文字幕在线观看 | 精品国产91乱码一区二区三区 | 欧美日韩在线观看视频 | 欧美成人精品欧美一级乱黄 | 91porny九色 | 亚洲一区二区 | 免费三片60分钟 | 无码一区二区 | 91久久国产综合久久91 | 国精产品一区一区三区有限公司杨 | 性生活视频网站 | 日韩小视频 | 日日夜夜精品 | 亚洲熟女乱综合一区二区三区 | 夜夜嗨老熟女av一区二区三区 | 亚洲欧美自拍偷拍 | 国产一区二区三区视频 | 亚洲第一天堂 | 一本色道久久综合亚洲精品酒店 | 男男h黄动漫啪啪无遮挡软件 | 日韩精品网站 | 男人天堂2024 | 住在隔壁的她动漫免费观看全集下载 | 一区二区三区在线观看视频 | 日韩av无码一区二区三区不卡 | 国产激情自拍 | 超碰av在线| 成人在线观看免费爱爱 | 91成人免费视频 | 蜜臀99久久精品久久久久久软件 | 中文字字幕在线中文乱码 | 91在线免费视频 | 午夜福利电影 | 99热在线播放 | 波多野结衣av在线播放 | 人人艹人人 | 久久久久久久国产 | 久久香蕉网 | 国产做爰免费视频观看 | 日韩三级在线观看 | 国产视频一区二区三区四区 | 日韩在线免费观看视频 | 名校风暴在线观看免费高清完整 | 国产一区二区三区视频在线观看 | 日本久久久久 | 小镇姑娘国语版在线观看免费 | 国产一区二区免费视频 | 国产精品一区二区三区四区 | aaa国产| 91在线看片 | 午夜精品久久久久久久99黑人 | 波多野结衣二区 | av久草| 春色av| 一区二区三区视频在线 | 色婷婷综合久久久中文字幕 | 日韩av无码一区二区三区不卡 | 自拍偷拍一区 | 在线免费观看黄色 | 亚洲女人被黑人巨大的原因 |