免费看大片a-亚洲精品中文字幕乱码三区91-久久久在线视频-中文字幕免费高清在线观看-狼人狠狠干-www婷婷-欧美第一视频-国产中文字字幕乱码无限-色呦呦在线播放-男女羞羞无遮挡-成人男女视频-久久传媒-久久草精品-久久久精品综合-国产免费二区-四虎影院一区二区-国产操人-操操操爽爽爽-色就是色网站-久久77777-神马伦理影视-91手机在线看片-黄视频国产-中文字幕第100页-视频免费1区二区三区

Suzhou Electric Appliance Research Institute
期刊號: CN32-1800/TM| ISSN1007-3175

Article retrieval

文章檢索

首頁 >> 文章檢索 >> 往年索引

基于CEEMDAN-LSTM-CNN網絡的短期電力負荷預測

來源:電工電氣發布時間:2023-07-01 11:01 瀏覽次數:606

基于CEEMDAN-LSTM-CNN網絡的短期電力負荷預測

簡定輝,李萍,黃宇航,梁志洋
(寧夏大學 物理與電子電氣工程學院,寧夏 銀川 750021)
 
    摘 要:短期電力負荷隨機性和波動性較強,傳統的負荷預測方法難以掌握短期負荷變化的規律。為提高短期電力負荷預測精度,提出一種融合自適應噪聲完備集合經驗模態分解 (CEEMDAN)、長短時記憶 (LSTM) 網絡、卷積神經網絡 (CNN) 的短期電力負荷預測方法。從數據集中提取原始負荷序列,利用 CEEMDAN 將其分解為多個固有模式函數 (IMF),降低其非穩定性;采用 LSTM 網絡分析各分量時序特征,獲得多個預測結果;將各預測結果疊加后通過 CNN 和全連接層分別進行特征提取和數據特征學習,獲得最終負荷預測結果。將所提方法分別與基準模型及其他文獻方法通過實際算例進行對比分析,結果表明,所提方法能夠準確掌握負荷變化的規律,且在一天負荷預測問題中精度達到97.32%。
    關鍵詞: 電力負荷預測;自適應噪聲完備集合經驗模態分解;長短時記憶網絡;卷積神經網絡;皮爾遜相關系數
    中圖分類號:TM715     文獻標識碼:A     文章編號:1007-3175(2023)06-0001-06
 
Short-Term Power Load Forecasting Based on
CEEMDAN-LSTM-CNN Network
 
JIAN Ding-hui, LI Ping, HUANG Yu-hang, LIANG Zhi-yang
(School of Physics and Electronic-Electrical Engineering, Ningxia University, Yinchuan 750021, China)
 
    Abstract: The randomness and fluctuation of short-term power load are strong, which makes the traditional power load forecasting method difficult to grasp the rule of short-term load variation. In order to increase the accuracy of short-term power load forecasting, the paper puts forward a new short-term power load forecasting method with the combination of Complete Ensemble Empirical Mode Decomposition with Adaptive Noise(CEEMDAN), Long Short-Term Memory(LSTM) network and Convolutional Neural Network(CNN). It first extracts original load series from dataset and uses CEEMDAN to decompose them into several Intrinsic Mode Functions(IMF), decreasing their non-stability.Then, LSTM network is adopted to analyze quantified time series characteristics to achieve several forecasting results. Thirdly, after superimposing these forecasting results, CNN and the fully connected layer are used to extract features and learn date features respectively to obtain the final power load forecasting results. The proposed method is compared with the benchmark model and other literature methods by practical examples. The results show that it can accurately grasp the rule of load variation, and the accuracy of the daily load prediction problems reaches 97.32%.
    Key words: power load forecasting; CEEMDAN; LSTM; CNN; Pearson correlation coefficient
 
參考文獻
[1] 董彥軍,王曉甜,馬紅明,等. 基于隨機森林與長短期記憶網絡的電力負荷預測方法[J] . 全球能源互聯網,2022,5(2):147-156.
[2] 何心毅,郎勁,張顏顏,等. 基于改進長短期記憶神經網絡的鋼鐵企業電力負荷預測方法[J] . 冶金自動化,2022,46(3):48-56.
[3] 李焱,賈雅君,李磊,等. 基于隨機森林算法的短期電力負荷預測[J] . 電力系統保護與控制,2020,48(21):117-124.
[4] 胡怡霜,夏翔,丁一,等. 基于因子和趨勢分析反饋的多元回歸負荷預測[J] . 電力需求側管理,2018,20(6):22-25.
[5] 朱健安,魏云冰,朱鵬杰,等. 基于優化灰色傅里葉殘差修正的中長期負荷預測[J] . 電子科技,2021,34(12):49-55.
[6] 呂留根,羅義英,黃晨. 基于輻射時間序列法的房間空調負荷實驗研究[J] . 科技通報,2019,35(2):150-154.
[7] 剛文龍,陳希輝,肖紫薇. 基于隨機森林的空調冷負荷逆向分解方法[J] . 煤氣與熱力,2022,42(5):22-26.
[8] 蘇顏,張珍,林慶達,等. 基于 BP 神經網絡算法的短期電力負荷預測研究[J] . 電子設計工程,2022,30(12):167-170.
[9] 鐘勁松,王少林,冉懿,等. 基于互信息和 LSTM 的用戶負荷短期預測[J] . 電力建設,2022,43(7):96-102.
[10] 劉月峰,楊宇慧. 基于 CNN-LSTM 的短期電力負荷預測研究[J]. 科技創新與應用,2020(1):84-85.
[11] 王榮茂,謝寧,于海洋,等. 基于 EMD-LSTM 模型的臺區負荷短期預測方法[J] . 實驗室研究與探索,2022,41(1):62-66.
[12] 秦光宇,閆慶友,朱敬堯. 短期電力負荷預測模型及其應用研究[J] . 價格理論與實踐,2020(2):75-78.
[13] 沈富鑫,邴其春,張偉健,等. 基于 CEEMD-GRU 組合模型的快速路短時交通流預測[J] . 河北科技大學學報,2021,42(5):454-461.
[14] 谷凱文,魏霞,黃德啟,等. 基于 CEEMDAN-MFO-RBF 的風電功率短期預測[J]. 新疆大學學報(自然科學版)(中英文),2022,39(1):111-118.
[15] 萬磊,余飛,魯統偉,等. 基于 CEEMDAN-CNN-GRU 組合模型的短期負荷預測方法[J] . 河北科技大學學報,2022,43(2):154-161.
[16] 方娜,余俊杰,李俊曉,等. 基于 CNN-BIGRU-ATTENTION 的短期電力負荷預測[J]. 計算機仿真,2022,39(2):40-44.
[17] 張銘瑋,李正權,方志豪. 基于量子粒子群優化的 CNN-LSTM 水質預測模型[J] . 中國計量大學學報,2022,33(3):303-309.
[18] 張雪,肖秦琨. CEEMDAN 組合 DISPSO-LSTM 的短期電力負荷預測[J] . 西安工業大學學報,2021,41(4):461-469.
[19] WEI Dong, WEI Sun.Traffic Flow Prediction Based on Bi LSTM and Attention [J] .International Core Journal of Engineering,2022,8(3):439-444.
[20] SARAVANA R, VENKATACHALAM K, MASUD M, et al.Air Pollution Prediction Using Dual Graph Convolution LSTM Technique[J].Intelligent Automation & Soft Computing, 2022,33(3):1639-1652.
[21] 簡定輝,李萍,黃宇航. 基于 GA-VMD-ResNet-LSTM 網絡的短期電力負荷預測[J] . 國外電子測量技術,2022,41(10):15-22.

 

主站蜘蛛池模板: 99人妻碰碰碰久久久久禁片 | 国产青青草 | 男人操女人的视频 | 色天天| 黑人操日本女人 | 日日夜夜艹 | 亚洲av毛片 | 精品人妻一区二区三区日产 | www.午夜| 国产高清一区 | 日韩在线| 成人动作片 | 亚洲天堂一区二区三区 | 中文字幕免费高清 | 名校风暴在线观看免费高清完整 | 麻豆短视频| 邵氏电影《金莲外传2》免费观看 | 亚洲午夜精品久久久久久app | 精品夜夜澡人妻无码av | 国产一级黄色大片 | 97爱爱| 99热最新| 精品人伦一区二区三区 | 欧美性xxxxx 日韩久久久久 | 国产成人精品一区二区三 | 久久九| 四虎影成人精品a片 | 国模一区二区三区 | 亚洲免费看片 | 古装做爰无遮挡三级 | 国产中文字幕在线观看 | 围产精品久久久久久久 | 国产成人精品一区二区三 | 天天看天天爽 | 亚洲一级黄色片 | 欧美成人一区二区 | 99看片| 最好看的mv中文字幕国语电影 | 成人看片泡妞 | 麻豆射区 | 狠狠干综合 | 日韩精品在线视频 | 欧美操操操 | 亚洲aⅴ| 日本三级视频 | 五月婷婷在线视频 | 国产一级黄色电影 | 亚洲国产成人精品女人久久久 | 日韩久久久久 | 特级淫片裸体免费看冫 | 国产一级片 | 国产欧美精品 | 日韩激情 | 成人午夜免费视频 | 五月天丁香| 欧美mv日韩mv国产网站 | 男人的天堂在线 | 青青草视频| 亚洲福利电影 | 999视频 | 久久三级视频 | 亚洲综合第一页 | 久久亚洲精品视频 | 黄色片免费| 3333在线看免费观看电视剧 | 黄网站在线观看 | 一区二区三区av | 日本大乳奶做爰洗澡三级 | 色婷婷精品国产一区二区三区 | 日韩视频在线免费观看 | 17c一起操| 日本吃奶摸下激烈网站动漫 | 91精品91久久久中77777 | 中文字幕一级片 | 91美女片黄 | 午夜av福利 | 人人妻人人澡人人爽人人dvd | 国产吃瓜黑料一区二区 | 欧美日韩视频 | 四虎tv| 91视频免费看 | 黄色免费网站 | 中文字幕高清 | 一区二区三区在线观看视频 | 天堂中文网 | 一区二区中文字幕 | 97视频在线播放 | 亚洲欧美日韩一区 | 青青草网站 | 欧美一级黄 | 欧美mv日韩mv国产网站 | 大尺度叫床戏做爰视频 | 一区二区三区在线免费观看 | 亚洲无人区码一码二码三码的含义 | 天堂网av在线 | 玖玖在线 | 国产电影一区二区三区 | 欧美日韩精品在线观看 | 亚洲欧美日韩综合 |