免费看大片a-亚洲精品中文字幕乱码三区91-久久久在线视频-中文字幕免费高清在线观看-狼人狠狠干-www婷婷-欧美第一视频-国产中文字字幕乱码无限-色呦呦在线播放-男女羞羞无遮挡-成人男女视频-久久传媒-久久草精品-久久久精品综合-国产免费二区-四虎影院一区二区-国产操人-操操操爽爽爽-色就是色网站-久久77777-神马伦理影视-91手机在线看片-黄视频国产-中文字幕第100页-视频免费1区二区三区

Suzhou Electric Appliance Research Institute
期刊號: CN32-1800/TM| ISSN1007-3175

SUBSCRIPTION MANAGEMENT

發(fā)行征訂

首頁 >> 發(fā)行征訂 >> 征訂方式

基于改進高斯過程回歸的變電站直流蓄電池SOH估算

來源:電工電氣發(fā)布時間:2025-11-25 12:25瀏覽次數:10
基于改進高斯過程回歸的變電站直流蓄電池SOH估算
 
丁芃,謝昊含,司威,楊茹楠,劉明陽
(國網天津市電力公司濱海供電分公司,天津 300450)
 
    摘 要 :為了準確估算變電站直流蓄電池的健康狀態(tài)(SOH),輔助直流系統(tǒng)的運行決策,提出了一種基于改進高斯過程回歸的蓄電池SOH估算方法,通過建立變電站蓄電池組在實際不同運行工況下的蓄電池健康特征指標(HF),對高斯過程回歸算法進行適應性改進,將變電站蓄電池實際歷史運行數據與離線測試數據按比例混合制作訓練集,實現(xiàn)變電站蓄電池HFSOH之間的映射關系。實驗結果表明,該方法針對于變電站這一特殊場景下的蓄電池具有良好的估算效果,可為直流系統(tǒng)運行維護提供理論依據。
    關鍵詞 : 變電站 ;直流蓄電池 ;蓄電池健康狀態(tài) ;蓄電池運行工況 ;高斯過程回歸 ;訓練集
    中圖分類號 :TM63 ;TM912     文獻標識碼 :A     文章編號 :1007-3175(2025)11-0014-07
 
SOH Estimation for DC Batteries in Substations Based on Improved Gaussian Process Regression
 
DING Peng, XIE Hao-han, SI Wei, YANG Ru-nan, LIU Ming-yang
(State Grid Tianjin Electric Power Company Binhai Power Supply Branch, Tianjin 300450, China)
 
    Abstract: In order to accurately estimate the state of health (SOH) of DC batteries in substations and assist in the operation decision-making of DC systems, this paper proposes a battery SOH estimation method based on improved Gaussian process regression. By establishing the health of feature (HF) of battery packs in substations under different operating conditions, the Gaussian process regression algorithm is adaptively improved. The actual historical operating data of substation batteries is mixed with offline test data in proportion to create a training set, achieving the mapping relationship between HF and SOH of substation batteries. The experimental results show that this method has good estimation effect on batteries in this special scenario of substations and can provide theoretical basis for the operation and maintenance of DC systems.
    Key words: substation; DC battery; state of health of battery; operating condition of battery; Gaussian process regression; training set
 
參考文獻
[1] 孫冬,許爽 . 梯次利用鋰電池健康狀態(tài)預測 [J]. 電工 技術學報,2018,33(9):2121-2129.
[2] GONG Qingrui, WANG Ping, CHENG Ze.An encoderdecoder model based on deep learning for state of health estimation of lithium-ion battery[J].Journal of Energy Storage,2022,46:103804.
[3] TIAN Jinpeng, XIONG Rui, SHEN Weixiang, et al. State-of-charge estimation of LiFePO4 batteries in electric vehicles:A deep-learning enabled approach[J].Applied Energy,2021,291:116812.
[4] HAN Xuebing, OUYANG Minggao, LU Languang, et al. Simplification of physics-based electrochemical model for lithium ion battery on electric vehicle. Part Ⅱ :Pseudo-twodimensional model simplification and state of charge estimation[J].Journal of Power Sources, 2015,278 :814-825.
[5] PLETT G L.Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs: Part3. State and parameter estimation[J]. Journal of Power Sources,2004,134(2):277-292.
[6] WANG Yujie, ZHANG Chenbin, CHEN Zonghai.A method for state-of-charge estimation of LiFePO4 batteries at dynamic currents and temperatures using particle filter[J].Journal of Power Sources,2015,279:306-311.
[7] CHANG Chun, WANG Qiyue, JIANG Jiuchun, et al. Lithium-ion battery state of health estimation using the incremental capacity and wavelet neural networks with genetic algorithm[J]. Journal of Energy Storage,2021,38:102570.
[8] LIU Datong, ZHOU Jianbao, LIAO Haitao, et al.A health indicator extraction and optimization framework for lithium-ion battery degradation modeling and prognostics[J].IEEE Transactions on Systems, Man, and Cybernetics:Systems,2015, 45(6):915-928.
[9] TIAN Jinpeng, XIONG Rui, SHEN Weixiang.Stateof-health estimation based on differential temperature for lithium ion batteries[J]. IEEE Transactions on Power Electronics,2020, 35(10):10363-10373. [10] ZHANG Li, LI Kang, DU Dajun, et al.A sparse least squares support vector machine used for SOC estimation of Li-ion Batteries[J].IFACPapersOnLine,2019,52(11):256-261.
[11] LI Xiaoyu, YUAN Changgui, WANG Zhenpo.Multitime-scale framework for prognostic health condition of lithium battery using modified Gaussian process regression and nonlinear regression[J].Journal of Power Sources,2020, 467:228358.
[12] GOEBEL K, SAHA B, SAXENA A, et al.Prognostics in battery health management[J].IEEE Instrumentation & Measurement Magazine,2008,11(4):33-40.
[13] HE Jianghe, WEI Zhongbao, BIAN Xiaolei, et al. State-of-health estimation of lithium-ion batteries using incremental capacity analysis based on voltage-capacity model[J].IEEE Transactions on Transportation Electrification, 2020,6(2):417-426.
[14] XUE Jiankai, SHEN Bo.A novel swarm intelligence optimization approach: Sparrow search algorithm[J]. Systems Science & Control Engineering an Open Access Journal,2020,8(1):22-34.
[15] CHUNG J, GULCEHRE C, CHO K H, et al.Empirical evaluation of gated recurrent neural networks on sequence modeling[J/OL].(2014-12-11)[2025- 08-14].https//arxiv.org/abs/1412.3555.
主站蜘蛛池模板: 精品人妻少妇嫩草av无码专区 | 91视频在线观看 | 久久久久久久久久久久久久 | 欧美激情一区二区 | 少妇高潮久久久久久潘金莲 | 三度诱惑免费版电影在线观看 | 一卡二卡三卡 | 欧美视频 | 国产精品久久久久久久 | 欧美黑人猛交 | 久久天堂 | 亚洲爆乳无码一区二区三区 | 六月婷婷综合 | 污污网站在线观看 | 日韩中文字幕视频 | 超碰免费观看 | 欧美成人精品欧美一级乱黄 | 日韩成人片 | 中文字幕在线免费观看视频 | 国产www免费观看 | 国产一区二区精品 | 熟女俱乐部一区二区视频在线 | 亚洲综合网站 | 在线视频91 | 韩国禁欲系高级感电影 | 国产黄色大片 | 蘑菇av | 久久久久久久久久久久久久 | 91av在线播放 | 欧美精品一区二区三区四区 | 国产精品黄| 天天想你在线观看完整版电影高清 | 精品人伦一区二区三区 | av网站免费在线观看 | 国产一区二区三区免费 | 国语对白 | 国产一区二区在线播放 | 免费国产视频 | 在线不卡 | 国精产品一区一区三区有限公司杨 | 成人18aa黄漫免费观看 | 国产高清不卡 | 粗口调教gay2022.com| 国产熟女一区二区三区五月婷 | 国产中文字幕在线 | 亚洲一区av | 免费成人在线观看 | 久久伊人精品 | 毛片无码一区二区三区a片视频 | 伊人91| 亚洲精品在线观看视频 | 中文在线字幕 | 国产高清av| 国产福利91精品一区二区三区 | 天堂va蜜桃一区二区三区 | av电影在线播放 | 国产成人毛片 | 国产一页 | 婷婷五月花 | 国产精品久久久午夜夜伦鲁鲁 | 美国毛片基地 | 欧美亚洲视频 | 国产精品久久久久久久久 | 中文字幕乱伦视频 | 亚洲五月婷婷 | 婷婷导航 | 黄色片视频 | 亚洲精品大片 | 天堂在线观看视频 | 私密spa按摩按到高潮 | 日韩在线不卡 | 97在线免费视频 | 成人伊人 | 久久av一区二区三区 | 午夜国产福利 | 国产色片 | 美女一区二区三区 | 国产精品精东影业 | 强行挺进白丝老师翘臀网站 | 男女做爰猛烈叫床爽爽免费网站 | 一区二区三区在线免费观看 | 国产视频久久 | 亚洲一区二区视频 | 97影院| 欧美日韩在线观看视频 | 蜜桃av在线播放 | 亚洲色图第一页 | 黄色片毛片 | 伊人视频 | 日韩超碰| 亚洲精品一区中文字幕乱码 | av麻豆 | www欧美| 国产高清在线视频 | 精品无码一区二区三区 | 日本少妇高潮抽搐 | 免费视频一区二区 | 黄色大片网站 | 免费的av网站 |