免费看大片a-亚洲精品中文字幕乱码三区91-久久久在线视频-中文字幕免费高清在线观看-狼人狠狠干-www婷婷-欧美第一视频-国产中文字字幕乱码无限-色呦呦在线播放-男女羞羞无遮挡-成人男女视频-久久传媒-久久草精品-久久久精品综合-国产免费二区-四虎影院一区二区-国产操人-操操操爽爽爽-色就是色网站-久久77777-神马伦理影视-91手机在线看片-黄视频国产-中文字幕第100页-视频免费1区二区三区

Suzhou Electric Appliance Research Institute
期刊號: CN32-1800/TM| ISSN1007-3175

SUBSCRIPTION MANAGEMENT

發行征訂

首頁 >> 發行征訂 >> 征訂方式

基于小波變換結合堆疊融合算法的非侵入式負載識別

來源:電工電氣發布時間:2025-10-28 15:28瀏覽次數:30

基于小波變換結合堆疊融合算法的非侵入式負載識別

李港,邱達,劉西林
(湖北民族大學 智能科學與工程學院,湖北 恩施 445000)
 
    摘 要:針對非侵入式負載監測識別準確率低、泛化能力弱、穩定性差的問題,提出了一種結合特征選擇性小波變換與堆疊融合分類算法的負載識別方法。研究利用 CS5463 芯片采集電能數據,通過特征選擇性小波變換提取電流的時頻特征,并結合功率和功率因數構建復合特征向量。采用k 最近鄰算法(KNN)、隨機森林(RF)和支持向量機(SVM)作為基學習器,通過堆疊融合算法提升準確率、泛化能力,優化分類性能,并引入動態負載識別優化算法以提升實際應用效果。實驗結果表明,該堆疊融合模型在測試集上的準確率為98.42%,而單一模型KNN、SVM和RF的準確率分別為90.24%、94.99% 和97.10%,同樣數據集上未經小波變換的融合算法準確率為93.67%,加入動態負載識別優化算法后,模型的穩定性和準確性在實際應用中進一步提高。
    關鍵詞: 非侵入式負載監測;特征選擇性小波變換;堆疊融合算法;CS5463 芯片;動態負載識別優化算法
    中圖分類號:TM714 ;TM734     文獻標識碼:A     文章編號:1007-3175(2025)10-0031-07
 
A Non-Intrusive Load Identification Method Based on Wavelet
Transform and Stacked Fusion Algorithm
 
LI Gang, QIU Da, LIU Xi-lin
(College of Intelligent Systems Science and Engineering, Hubei Minzu University, Enshi 445000, China)
 
    Abstract: To address the challenges of low identification accuracy, weak generalization capability, and poor stability in non-intrusive load monitoring,this paper proposes a load identification method that integrates feature-selective wavelet transform with a stacked fusion algorithm. The study utilizes the CS5463 chip to collect electrical data, extracts the time-frequency characteristics of current signals by applying feature-selective wavelet transform, and combines with power and power factor information to construct a composite feature vector. Subsequently, k-nearest neighbors (KNN) algorithm, random forests (RF) , and support vector machines (SVM) are employed as base learners, the accuracy and generalization ability are enhanced through the stacked fusion algorithm, the classification performance is optimized, and the dynamic load identification optimization algorithm is introduced to improve the practical application effect. Experimental results demonstrate that the accuracy rate of the stacked fusion model on the test set is 98.42%, while the accuracy rates of the single models KNN, SVM and RF are 90.24%, 94.99% and 97.10% respectively. The accuracy rate of the fusion algorithm without wavelet transform on the same dataset is 93.67%. After adding the dynamic load identification optimization algorithm,the stability and accuracy of the model have been further enhanced in practical applications.
    Key words: non-intrusive load monitoring; feature-selective wavelet transform; stacked fusion algorithm; CS5463 chip; dynamic load identification optimization algorithm
 
參考文獻
[1] 陳繼開,祝世啟,李浩茹,等. 弱電網下并網逆變器鎖相環優化方法[J]. 儀器儀表學報,2022,43(2) :234-243.
[2] REHMAN A U, TITO S R, NIEUWOUDT P, et al.Applications of Non-Intrusive Load Monitoring Towards Smart and Sustainable Power Grids:A System Perspective[C]//2019 29th Australasian Universities Power Engineering Conference(AUPEC),2019 :1-6.
[3] HART G W.Nonintrusive appliance load monitoring [J].Proceedings of the IEEE,1992,80(12) :1870-1891.
[4] ZEIFMAN M, ROTH K.Nonintrusive appliance load monitoring: Review and outlook[J].IEEE Transactions on Consumer Electronics,2011,57(1) :76-84.
[5] NGUYEN M, ALSHAREEF S, GILANI A, et al.A novel feature extraction and classification algorithm based on power components using single-point monitoring for NILM[C]//2015 IEEE 28th Canadian Conference on Electrical and Computer Engineering(CCECE),2015 :37-40.
[6] LU Lei, GU Chao, FENG Junguo, et al.Non-Intrusive Load Monitoring Based on Multiple Feature Optimization and Genetic Algorithm[C]//2022 5th International Conference on Renewable Energy and Power Engineering(REPE),2022 :115-120.
[7] SUN Mingxu, NAKOTY Francis Mawuli, LIU Qi, et al.Non-intrusive load monitoring system framework and load disaggregation algorithms:A survey[C]//2019 International Conference on Advanced Mechatronic Systems(ICAMechS),2019 :284-288.
[8] PRECIOSO D, GOMEZ-ULLATE D.Thresholding methods in non-intrusive load monitoring[J].The Journal of Supercomputing,2023,79(13) :14039-14062.
[9] MOHAMMAD I A, RAJABI R, ESTEBSARI A.Non-Intrusive Load Monitoring(NILM) Using Deep Neural Networks:A Review[EB/OL].(2023-06-08)[2025-06-05].https://arxiv.org/pdf/2306.05017.
[10] MURSHED M G S, MURPHY C, HOU D, et al.Machine learning at the network edge:A survey[J].ACM Computing Surveys(CSUR),2021,54(8) :1-37.
[11] GUIDOTTI R, MONREALE A, RUGGIERI S, et al.A survey of methods for explaining black box models[J].ACM Computing Surveys(CSUR),2018,51(5) :1-42.
[12] 董慧芬,陳蒙. 電能質量信號的非均勻子帶分解小波去噪[J]. 電子測量與儀器學報,2022,36(3) :149-156.
[13] HE Hui, LIU Zixuan, JIAO Runhai, et al.A novel nonintrusive load monitoring approach based on linear-chain conditional random fields[J].Energies,2019,12(9) :1797.
[14] CHEN Junfeng, WANG Xue, ZHANG Xiaotian, et al.Temporal and spectral feature learning with twostream convolutional neural networks for appliance recognition in NILM[J].IEEE Transactions on Smart Grid,2022,13(1) :762-772.
[15] FANG Zhaoyuan, ZHAO Dongbo, CHEN Chen, et al.Nonintrusive appliance identification with appliance-specific networks[J].IEEE Transactions on Industry Applications,2020,56(4) :3443-3452.
[16] GHOSH S , CHATTERJEE A , CHATTERJEE D . An improved load feature extraction technique for smart homes using fuzzy-based NILM[J].IEEE Transactions on Instrumentation and Measurement,2021,70 :1-9.
[17] REHMAN A U , LIE T T , VALLES B , et al .Comparative evaluation of machine learning models and input feature space for non-intrusive load monitoring[J].Journal of Modern Power Systems and Clean Energy,2021,9(5) :1161-1171.
[18] SAHA D, BHATTACHARJEE A, CHOWDHURY D, et al.Comprehensive NILM framework:Device type classification and device activity status monitoring using capsule network[J].IEEE Access,2020,8 :179995-180009.
[19] 朱浩,曹寧,鹿浩,等. 基于特征加權 KNN 的非侵入式負荷識別方法[J]. 電子測量技術,2022,45(8) :70-75.
[20] LI Ding, DICK Scott.Residential household nonintrusive load monitoring via graph-based multilabel semi-supervised learning[J].IEEE Transactions on Smart Grid,2019,10(4) :4615-4627.
[21] BERGES M, GOLDMAN E, MATTHEWS H S, et al. Training load monitoring algorithms on highly sub-metered home electricity consumption data[J].Tsinghua Science and Technology,2008,13(S1) :406-411.
[22] CHEN M T, LIN C M.Standby power management of a smart home appliance by using energy saving system with active loading feature identification[J].IEEE Transactions on Consumer Electronics,2019,65(1) :11-17.
[23] LIU Yanchi, WANG Xue, YOU Wei.Non-intrusive load monitoring by voltage-current trajectory enabled transfer learning[J].IEEE Transactions on Smart Grid,2019,10(5) :5609-5619.

 

主站蜘蛛池模板: 99精品视频在线 | 精品视频 | 男女视频在线观看 | 亚洲青青草 | 久免费一级suv好看的国产 | 肉欲性大交毛片 | 亚洲免费观看高清 | 国产精品视频久久 | 亚洲网站在线观看 | 97福利 | 久久久久久久久久久久久久久久久久 | 欧美做受喷浆在线观看 | 国产ts变态重口人妖hd | 国内精品视频在线观看 | 91香蕉视频在线 | 91麻豆产精品久久久久久夏晴子 | 日本伊人网 | 国产欧美一区二区三区在线看蜜臀 | 国产精品美女视频 | 成人黄色小视频 | 妖精视频在线观看 | 国产一级18片视频 | 日本欧美在线 | 久草免费在线观看 | 在线观看视频一区 | 久草视频免费在线观看 | 日韩中文字幕在线观看 | 性欧美xxxx| 日本黄色小视频 | 国产视频一区二区在线观看 | 亚洲精品国产精品国自产观看浪潮 | 九九热精品视频 | 成人午夜免费视频 | 青草视频在线播放 | 久免费一级suv好看的国产 | 亚洲欧洲日韩 | 97精品视频 | 日本欧美久久久久免费播放网 | 一级片免费观看 | 亚洲黄色片 | 日韩高清在线观看 | 麻豆毛片| 91视频免费在线观看 | 已满18岁免费观看电视连续剧 | 久久久久亚洲 | 国产免费一区二区 | 日本一区二区三区在线观看 | 日韩黄网 | 91av视频在线 | 免费看裸体网站视频 | 快色视频| av最新网址 | 99爱视频| 欧美久久久 | 欧美成人一区二区三区 | 亚洲图片欧美 | 亚洲三级在线观看 | 毛片一级片 | 亚洲精品一区 | 日韩视频在线播放 | 娇妻被老王脔到高潮失禁视频 | 超碰伊人 | 亚洲三级在线观看 | 最好看的2019中文大全在线观看 | 中文字幕91 | 免费看裸体网站 | 日本一级做a爱片 | 日日久 | 美女啪啪网站 | 久久不卡 | 亚洲精品一区二区 | 午夜日韩| av三级| 国产伦精品一区二区三区88av | 欧美精品第一页 | 久久久久亚洲av成人无码电影 | 香蕉视频免费在线观看 | 亚洲欧美视频 | 日韩爱爱视频 | 日韩免费在线视频 | 日本一级大片 | 成人黄色在线观看 | 国产真实乱人偷精品人妻 | 国产真实乱人偷精品人妻 | 天堂资源 | 中文字幕在线视频观看 | 桃色av| av色综合| 涩涩视频在线观看 | 99精品视频在线 | 成人播放器 | 欧美国产在线观看 | 搡老岳熟女国产熟妇 | 在线播放中文字幕 | 日韩欧美大片 | 6080午夜 | 国产精品96久久久久久 | 欧美视频一区二区三区 | 国产精品91视频 |